
REVIEWbph_1588 2015..2033

Use of inotropes and
vasopressor agents in
critically ill patients
Mansoor N Bangash, Ming-Li Kong and Rupert M Pearse

William Harvey Research Institute, Barts and The London School of Medicine and Dentistry,

London, UK

Correspondence
Rupert Pearse, Intensive Care
Unit, Royal London Hospital,
London E1 1BB, UK. E-mail:
r.pearse@qmul.ac.uk
----------------------------------------------------------------

Keywords
inotrope; vasopressor; critical
illness; haemodynamic shock
----------------------------------------------------------------

Received
20 December 2010
Revised
5 June 2011
Accepted
14 June 2011

Inotropes and vasopressors are biologically and clinically important compounds that originate from different pharmacological
groups and act at some of the most fundamental receptor and signal transduction systems in the body. More than 20 such
agents are in common clinical use, yet few reviews of their pharmacology exist outside of physiology and pharmacology
textbooks. Despite widespread use in critically ill patients, understanding of the clinical effects of these drugs in pathological
states is poor. The purpose of this article is to describe the pharmacology and clinical applications of inotropic and
vasopressor agents in critically ill patients.
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[Ca2+]i, Intracellular calcium concentration; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; CPR,
cardiopulmonary resuscitation; DO2, systemic oxygen delivery; GPCR, G-protein coupled receptor; GTP/GDP, guanosine
triphosphate/diphosphate; PKA/PKC, protein kinase A/C; PLC, phospholipase C; SvO2, mixed/central venous oxygen
saturation; TNF-a, tumour necrosis factor alpha; VO2, oxygen consumption

Introduction

Inotropes are agents administered to increase myocardial
contractility whereas vasopressor agents are administered to
increase vascular tone. The use of these potent agents is
largely confined to critically ill patients with profound hae-
modynamic impairment such that tissue blood flow is not
sufficient to meet metabolic requirements. Examples include
patients with severe heart failure and septic or cardiogenic
shock, as well as patients undergoing major surgery and
victims of major trauma. They are generally administered via
a large central vein and, in some specific situations, via a
peripheral vein. These agents have a diverse range of actions
including metabolic and immune effects, many of which are
poorly understood. The objective of this review is to describe
the underlying cardiovascular mechanisms that clinicians
seek to influence through the use of inotropic agents, to
describe the basic pharmacology of those drugs in common
use and, finally, to explore the evidence base for specific
approaches to inotrope and vasopressor therapy in clinical
practice. As many of the commonly used agents exert both
inotropic and vasopressor effects, the term ‘inotrope’ will be
generally used in this review to describe agents with a spec-
trum of actions.

The physiological basis for the actions of
inotropic agents
Myocyte excitation and contraction. Cardiac muscle fibres con-
tract through the sliding filament mechanism. Actin and
myosin filaments are propelled past each other through
repeated cross-bridge linking and unlinking. Each cardiac
action potential results in the opening of voltage-gated
myocyte calcium channels and a rise in intracellular calcium
concentration ([Ca2+]i). This triggers a further release of
calcium from the sarcoplasmic reticulum, which accounts for
around three quarters of the total increase in [Ca2+]i (Levick,
2003) (Figure 1). At rest, tropomyosin blocks the actin-
binding site, preventing engagement of myosin heads.
Calcium ions bind to troponin C within the troponin
complex, displacing tropomyosin. This exposes the actin-
binding site, allowing cross-bridge formation with myosin
heads. The orientation of the myosin head changes, causing
filaments to slide past each other in an ATP-dependent
process. At the end of the action potential, during repolariza-
tion, calcium ions are pumped back into the sarcoplasmic
reticulum, allowing myocardial relaxation.

Force and rate of myocardial contraction: inotropy and chrono-
tropy. Cardiac output is the volume of blood pumped by the
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heart each minute and is determined by the force and fre-
quency of ventricular contraction. Increased venous return
increases ventricular (and therefore myocyte) stretch in dias-
tole, resulting in increased filament overlap and hence, an
increase in the number of available calcium-binding sites.
This mechanism, which is the basis of Starling’s law of the
heart, ensures ventricular output changes in response to
changing venous return, thus, ensuring the output of the two
ventricles is finely matched. The force of ventricular contrac-
tion is also affected by changes in contractility or the force of
contraction for a given resting fibre length (Table 1). Inotro-
pic agents prolong the action potential plateau duration,
increasing [Ca2+]i, calcium release from the sarcoplasmic
reticulum and hence, contractility. Myocyte stretch also
affects myofilament sensitivity to [Ca2+]i, a mechanism
exploited in the use of certain novel inotropic drugs.

Vascular tone. Resistance vessel tone, sometimes termed
afterload, will influence cardiac output both directly and
through complex reflexes such as the baroreceptor reflex. For
a given preload and contractility, the direct effect of a decrease

Figure 1
Intracellular mechanisms of catecholamine and PDE inhibitor (PDEI) modulation of chronotropy, dromotropy, lusitropy and inotropy. b adreno-
receptors coupled positively to adenylate cyclase via Gs increase cAMP levels and PKA activity. PDEIs inhibit cAMP breakdown, increasing levels
and PKA activity. cAMP increases the open state of if(Na+) channels to increase pacemaker rate. PKA co-ordinates by activating i(K+) channels
involved in repolarization. This is the cellular mechanism of chronotropy and dromotropy. PKA also increases L-type Ca2+ channel activity and
enhances sarcoplasmic reticulum (SR) Ca2+ uptake and lusitropy. Increased SR Ca2+ content and L-type Ca2+ channel activation increases
myocardial Ca2+ transients, resulting in greater contractile strength and inotropy. a1 adrenoceptors may also increase Ca2+ levels in a manner
similar to that in vascular smooth cells, but the increase is only 10–15% of that achievable by b adrenoceptor mechanisms. a2 adrenoceptors have
not been found on cardiomyocytes.
5′AMP, 5′ adenosine monophosphate; Gs/q, G-protein signalling a subunit to which receptor is coupled; if(Na+), channel related to inward ‘funny’
sodium current involved in pacemaker rate; ifK+, channel related to delayed rectifier potassium current involved in repolarisation; iLCa2+-, channel
related to inward calcium current; IP3, inositol 1,4,5 trisphosphate; PIP2, phosphatidylinositol 4,5 bisphosphate.

Table 1
Physiological factors which determine cardiac output

Determinants of cardiac output

Myocyte stretch

Changes in venous return

Changes in plasma volume

Contractility

Sympathetic tone

Circulating catecholamines

Exogenous inotropes

Heart rate

Sympathetic and parasympathetic tone

Circulating catecholamines

Exogenous drugs with chronotropic effects
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in afterload is to increase cardiac output and vice versa as
afterload rises. Importantly, during periods of haemodynamic
shock, loss of a number of homeostatic mechanisms may
impair contractility through acidosis, reductions in coronary
flow and an adverse myocardial oxygen supply–demand ratio.

Microvascular flow. The microvasculature consists of regions
of the circulation containing blood vessels of diameters less
than 100 mm (den Uil et al., 2008). The homeostasis of these
specialized areas is under myogenic, metabolic, immune and
neural controls (Levick, 2003). Abnormalities of microvascular
flow appear to play an important role in the pathophysiology
of critical illness (De Backer et al., 2004; Ince, 2005; Spanos
et al., 2010). Inotropic agents may influence this balance by
altering both cardiac output and microvessel tone (De Backer
et al., 2006; Jhanji et al., 2009b). Indirect effects of these drugs
may also exert complex results on endothelial permeability
and hence, blood volume, which is commonly reduced in
critical illness (Adamson et al., 1998; Waschke et al., 2004).

Metabolic effects. Inotropic agents alter metabolic rate and
the production of metabolically active molecules through
perfusion-related, receptor and second messenger-mediated
effects. These effects occur most frequently with adrenergic
agonists and PDE inhibitors (PDEIs), which may increase total
body oxygen consumption, peripheral insulin resistance,
suppression of insulin secretion, increased fatty acid and
lactate production and hyperglycaemia (Clutter et al., 1980;
Galster et al., 1981). Importantly, hyperglycaemia may be
associated with denudation of the endothelial glycocalyx and
deleterious effects on the microcirculation (Lipowsky, 2005).

Immune effects. Inotropic agents have been shown to alter
the state of activation of immune cells and may, therefore,
have important effects on immune function, which are cur-
rently poorly understood (Oberbeck, 2006). Endothelial func-
tion is an important component of the capacity of the
immune system to focus activity in specific tissue areas.
Immune cell–endothelial interactions occur by shear-
dependent or shear-independent mechanisms, both of which
are influenced by inotropic agents. Shear-dependent mecha-
nisms relate to flow through microvascular networks. At low
flows, the probability of immune cells interacting with the
endothelium increases (Lipowsky, 2005). Shear-independent
mechanisms describe changes in the activation state of
immune cells independent of flow. Activated cells have a
greater chance of endothelial interaction at any given flow
rate compared with quiescent cells.

Pharmacology of endogenous
vasoactive hormones
Catecholamines. The endogenous catecholamines adrena-
line, noradrenaline and dopamine are dihydroxybenzene (cat-
echol) molecules. They act as neurotransmitters within the
central and the sympathetic division of the autonomic
nervous system and hormones in circulating blood. Cat-
echolamines are synthesized in four stages within secreting
nerve terminals and the adrenal enterochromaffin cells
(Ganong, 2003). The first and rate-limiting step is the conver-
sion of tyrosine to dihydroxyphenylalanine (L-DOPA) by

tyrosine hydroxylase. L-DOPA is decarboxylated to dopamine,
which is taken up from the cytosol into neuronal vesicles in
neurones and chromaffin granules in the adrenal medulla.
Here, it is converted to noradrenaline (Philipu and Matthaei,
1988). In the adrenal medulla, noradrenaline re-enters the
cytosol and is converted to adrenaline.

Distribution and metabolism of endogenous catecholamines.
Only 10–20% of neuronally released noradrenaline reaches
the circulation (Esler et al., 1990). The remainder is rapidly
returned to the neurone by pre-synaptic uptake-1 or to
perineuronal structures by uptake-2 transporters (Graefe and
Bonisch, 1988). Reabsorbed noradrenaline is mostly recycled,
but some is metabolized by MAO (Youdim et al., 1988). Sixty
per cent of circulating adrenaline and noradrenaline remains
free within the plasma. The remainder is bound covalently to
either plasma proteins (11%) or to haemoglobin in erythro-
cytes (El-Bahr et al., 2006). There is a biphasic decay in plasma
catecholamine levels, the first phase lasting around 5 min
(uptake-2), and the second occurring over a month (plasma
protein decay) (El-Bahr et al., 2006). Catecholamine metabo-
lism occurs slowly in erythrocytes, which also act as a storage
pool (Azoui et al., 1996). Uptake-1 and 2 account for 25% of
adrenaline clearance from plasma (Clutter et al., 1980). Cir-
culating adrenaline and noradrenaline is subsequently
metabolized, principally by COMT (Kopin, 1985). Clearance
of catecholamines occurs principally in the liver and the
lungs, and is increased by b-adrenoceptor-mediated mecha-
nisms (Clutter et al., 1980). The kidneys excrete catechola-
mines almost entirely unchanged. There is also some
peripheral uptake of catecholamines, most notably in vascu-
lar smooth muscle cells and the heart (Eisenhofer, 2001). The
fate of peripherally released dopamine is similar to that of
noradrenaline and adrenaline.

Structure–activity relationships of catecholamines. Structural
differences in catecholamines result in some differences in
receptor affinity and rates of metabolism. Substitution on the
amino group of the catecholamine tail reduces a-receptor
affinity but increases b-receptor affinity (Henkel et al., 1981;
Lullman et al., 2000). Furthermore, b2 affinity is increased by
the size of the substituent. The position of hydroxyl groups
on the aromatic nucleus also alters adrenoceptor affinity as
does hydroxyl substitution on the catecholamine tail. These
latter groups are key in determining b2 affinity. For example,
dopamine and dobutamine lack side chain b-OH groups and
demonstrate low affinity and intrinsic activity at b2 adreno-
ceptors despite amino group substitutions (Mukherjee et al.,
1976; Lullman et al., 2000). Metabolism by COMT is affected
by the position of aromatic hydroxyl groups. Resistance to
MAO is conferred by substitution of methyl groups on the
amino tail with larger groups or introducing small alkyl resi-
dues (Lullman et al., 2000). Alkylation of the primary amino
group decreases affinity for uptake-1 (Graefe and Bonisch,
1988). Although catecholamine structure can determine the
degree of adrenoceptor activation, agonists at specific adreno-
ceptor subtypes may still generate differing concentrations of
second messengers such as cAMP, because of non-selective
G-protein coupling (Xiao et al., 2003). Drug–receptor interac-
tions are also influenced by polymorphisms of adrenoceptor
genes (Nakada et al., 2010).
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Function and distribution of adrenergic receptors. Adrenergic
receptors are classified into a-adrenoceptors and b-
adrenoceptors and further into respective subtypes (Table 2)
(Alexander et al., 2011). These GPCRs (Summers and McMar-
tin, 1993; Alexander et al., 2011) are susceptible to down-
regulation and desensitization (Bohm et al., 1997; Heck and
Bylund, 1997), which is a particular problem in shock states
such as sepsis (Tang et al., 1998). Although widespread
throughout the body, only their cardiovascular distribution is
discussed in this article. Adrenoceptor location within the
CVS determines the pattern of response to circulating and
neuronally released adrenergic agents (Brodde and Michel,
1999; Guimaraes and Moura, 2001) (Table 3). Adrenergic
receptor expression is minimal in capillaries but increases

with distance from the capillary in both arterioles and venules
(Furness and Marshall, 1974). The responses to catechola-
mines, therefore, vary across vascular beds, for example,
between mesenteric beds and skeletal muscle beds (Marshall,
1982). To date no a2 adrenoceptors have been found in the
human myocardium, although other adrenoceptors are
present there. Inotropy is provided predominantly by
b-adrenergic mechanisms, although a1 adrenoceptors can
bring about small increases in contractility.

Function and distribution of dopaminergic receptors. There are
five subtypes of dopaminergic receptors (Alexander et al.,
2011), classed in two groups: D1-like (subtypes DR1 and DR5)
and D2-like (subtypes DR2, DR3 and DR4). Whereas dopamine

Table 2
Adrenoceptors and subtypes, their cellular signalling mechanisms and cardiovascular effects

Adrenoceptor a b

Subtypes a1 a2 b1 b2 b3

Subclasses a1A, a1B, a1D a2A, a2B, a2C n/a

Principal Ga-signalling protein Gq/11 Gi/o Gs

Second messengers PLC/DAG/IP3/ PKC AC/cAMP/PKA (inhibits) AC/cAMP/PKA (stimulates)

Affinity for catecholamines Ad = NAd Ad > NAd Ad < NAd Ad > NAd Ad = NAd

Adrenoceptor subtype in
myocardium and effect of
agonism

a1A

↑ [Ca2+]i

None.
Pre-synaptic a2A

↓ [Ca2+]i

Predominantly b1 and some b2

↑ [Ca2+]i

Adrenoceptor subtype in vascular
smooth muscle cells and effect
of agonism

a1 >> a2

Primarily a1A in arteries
↑ [Ca2+]i vasoconstriction

b2 >> b1

b3 role unknown
↓ [Ca2+]i vasorelaxation

Adrenoceptor subtype in vascular
endothelium and effect of
agonism

n/a a2A

NO release vasorelaxation
b2

NO release vasorelaxation
(b3 role unknown)

AC, adenylate cyclase; Ad, Adrenaline; Gq/i/s, G-protein a-signalling subunit to which the relevant receptor is coupled; IP3, inositol 1,4,5
trisphosphate; n/a, not applicable; NAd, Noradrenaline; a1 >> a2, implies a1 predominates over a2.

Table 3
Adrenoceptor distribution determines vascular responses to catecholamines

Vessel type
Arteries Veins

Post-synaptic receptors close to synaptic junction a1 and b1 a2 and b2

Extrajunctional post-synaptic receptors a2 and b2 a1

Coronary circulation a1 and a2 in large arteries only

b present in small and large arteries. b1 >> b2.

Cerebral circulation Poor sympathetic innervations

a-adrenoceptor expression declines in smaller vessels

b-adrenoceptors may mediate vasodilatation

Splanchnic, b2 >> b1

Skeletal and Pulmonary a effects predominate over b in splanchnic circulation

Cutaneous circulation a2-adrenoceptors

Post-synaptic receptors close to the synaptic junction respond primarily to neuronal stimulation. Extrajunctional post-synaptic receptors
respond primarily to hormonal stimulation or exogenous adrenergic agents. b2 >> b1 implies predominance of b2 over b1.
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may activate both dopaminergic and adrenoceptors, the
former are not activated by other endogenous catecholamines
(Goldberg and Rajfer, 1985; Missale et al., 1998). All dopamin-
ergic receptor subtypes have been identified in the kidney
where they mediate natriuresis and diuresis (Bertorello and
Aperia, 1990; Lokhandwala and Amenta, 1991). Cardiac dopa-
minergic receptors (DR1 and DR4) mostly show some inotropic
effect, although less pronounced than b-adrenoceptor-
mediated responses (Motomura et al., 1978; Wang et al., 1991;
Wakita, 2007). Dopamine receptors can also be identified in
the adrenal medulla, autonomic ganglia, endothelium, and
the renal, mesenteric and splenic vasculature, where they are
both pre- (D2) and post-synaptic (D1 & D2) (Missale et al.,
1998). D1 receptors are found in the media of blood vessels and
cause vasodilatation. Vascular D2 receptor activation can cause
vasodilatation or constriction, depending on whether medial
or adventitial (Zeng et al., 2007). The overall effect of non-
selective dopaminergic activation, such as what occurs during
low-dose dopamine infusion, is to reduce vascular tone.

Adrenaline. Adrenaline (also known as epinephrine) is a
potent agonist at all adrenoceptors resulting in profound
increases in cardiac output and heart rate, mean arterial pres-
sure, and coronary blood flow. At low doses, passive stretch of
pulmonary vessels accommodates increases in cardiac output,
but as the plasma concentration of adrenaline increases, it will
eventually increase pulmonary vascular resistance and hence,
right ventricular afterload (Aviado and Schmidt, 1957). In
addition to gross cardiovascular effects, myocardial oxygen
demand rises because of increased heart rate and stroke work.
Splanchnic oxygen consumption and hepatosplanchnic
blood flow increase in association with an increased hepatic
metabolic workload (Bearn et al., 1951). Metabolic effects
include increased plasma glucose and lactate concentrations
(Bearn et al., 1951; Clutter et al., 1980; Galster et al., 1981). The
rise in lactate is of clinical importance as lactate is utilized in
critical illness as a marker of tissue hypoperfusion. However,
the increase in serum lactate induced by exogenous catechola-
mines does not appear to be associated with harm.

Noradrenaline. Noradrenaline (also known as norepineph-
rine) is an inotrope and a vasopressor (Levick, 2003). Norad-
renaline is often incorrectly described as a pure vasopressor
because of its a-adrenoceptor agonism and weak b2-
adrenoceptor agonism (Alexander et al., 2011). However,
noradrenaline has clearly described effects on contractility in
critical illness (Jhanji et al., 2009b). The effects of noradrena-
line on pulmonary vessels are similar to those of adrenaline
(Aviado and Schmidt, 1957). Owing to the relative sparsity of
cerebral vascular adrenoceptors, high doses of noradrenaline
can be safely used to maintain cerebral perfusion pressure
without significantly compromising flow in this circulation.
Similarly the coronary circulation is protected to a certain
extent from the vasoconstrictor effects of noradrenaline
(Guimaraes and Moura, 2001). However, noradrenaline does
decrease pulmonary, cutaneous, renal and splanchnic blood
flow (Bearn et al., 1951; Hoffbrand and Forsyth, 1973). Nora-
drenaline does not appear to cause an increase in serum
lactate, possibly as this is a b2-mediated effect (Day et al., 1996).
Compared with adrenaline, increases in plasma glucose are

relatively modest and coincide with a neutral effect on
splanchnic oxygen consumption in health (Bearn et al., 1951).

Dopamine. Dopamine acts on both dopaminergic and
adrenoceptors, giving a complex cardiovascular response
profile. At low doses (up to 5 mg·kg·min-1), primarily dopam-
inergic receptors are activated causing a decrease in vascular
resistance and mild increase in cardiac output. At doses of
5–15 mg·kg·min-1, b-adrenoceptor effects lead to increases in
cardiac output and heart rate (Sasada and Smith, 2003).
Beyond this, a-adrenoceptor effects predominate, causing an
increase in vascular resistance to the extent that cardiac
output may decrease. At low doses, dopamine increases renal
(Mousdale et al., 1988; Olsen et al., 1993) and splanchnic
(Sato et al., 1987) blood flow. Dopamine causes a modest
increase in metabolic rate, but without hyperlactataemia
(Ensinger et al., 1993; 1995). Neurohumoural effects of
dopaminergic activation in critical illness include a suppres-
sion of prolactin, thyroid and growth hormone secretion,
whereas glucocorticoid synthesis is increased (Van den
Berghe and de Zegher, 1996; Bailey and Burchett, 1997); these
effects may explain important immune effects of dopamine
in septic patients (Beck et al., 2004).

Other endogenous hormones
Vasopressin. In health, vasopressin is released from the pos-
terior pituitary in response to osmotic, chemoreceptor and
baroreceptor stimuli. In humans and most other mammals,
one of the nine amino acids constituting vasopressin is argi-
nine, although in some species, this is lysine. Vasopressin acts
on vascular smooth muscle V1 and oxytocin receptors (both
Gq/PLC coupled), causing vasoconstriction. Vasopressin may
also activate vascular smooth muscle V2 receptors (Gs/
adenylate cyclase/cAMP coupled) resulting in vasodilatation.
Endothelial V1, V2 and oxytocin receptor activation results in
NO-dependent vasodilatation. The importance of vascular V2

and oxytocin receptors is unsettled though. Overall, vaso-
pressin stimulation tends to cause constriction, but the exact
response depends on the precise location of receptor and the
concentration of vasopressin in the vicinity. Vasopressin
modulates autonomic function through activation of brain-
stem V1 receptors and can modulate endocrine status as it
stimulates adrenocorticotropic hormones release via V3 recep-
tors (Barrett et al., 2007). Exogenously administered arginine
vasopressin (aVP) and lysine vasopressin differ. Tri-glycyl
vasopressin, or terlipressin, is a prodrug slowly degraded by
liver and kidney endo- and exopeptidases to lysine vaso-
pressin, conferring a significantly longer duration of action
after i.v. bolus than aVP. Terlipressin has a greater selectivity
for vascular V1a receptors but less selectivity for renal tubular
V2 receptors than aVP (Bernadich et al., 1998). Terlipressin
may result in pulmonary vasoconstriction (Lange et al., 2007)
and affect coagulation systems (Morelli et al., 2009) although
aVP does not.

In septic shock, the administration of exogenous aVP
(0.01–0.04 U·min-1) results in the reversal of vasodilatory
shock. There are multiple mechanisms by which this may
occur. Briefly, exogenously administered vasopressin may
reverse a relative deficiency of the hormone seen in established
sepsis. Vascular smooth muscle cation channel function and
contractile machinery are affected such that vasorelaxation is
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opposed. V1 and a1-adrenoceptor crosstalk, an amelioration of
autonomic dysfunction, an increase of other endogenous
vasoconstrictors and a potential effect on both NO and gluco-
corticoid production may also contribute to the partial resto-
ration of vascular reactivity to catecholamines and the reversal
of vasodilatation (Barrett et al., 2007). The details of these
mechanisms are beyond the scope of this article and may be
found elsewhere (Barrett et al., 2007). Research into other
compounds affecting vasopressin receptor systems in sepsis is
currently ongoing (Rehberg et al., 2011).

Exogenous inotropes and vasopressor agents
Dobutamine. Dobutamine is a synthetic catecholamine
available as a racemic mixture (Majerus et al., 1989), with
mixed b-adrenoceptor effects, binding in a 3:1 ratio to b1 and
b2 adrenoceptors respectively. It also demonstrates mild
a1-adrenoceptor agonism (Ruffolo, 1987), which explains
why decreases in vascular resistance do not persist at higher
doses. Heart rate increases are modest and renal plasma flow
is not greatly affected (Mousdale et al., 1988; Olsen et al.,
1993). Dobutamine is widely used in the short-term treat-
ment of severe heart failure and cardiogenic shock and is a
first-line agent to increase cardiac output in septic shock,
although usually in combination with a vasoconstrictor
agent (Rudis et al., 1996; Beale et al., 2004). As dobutamine
increases myocardial oxygen demand, it is used as a stressor
in cardiac assessment (Patel et al., 2007).

Dopexamine. This synthetic structural analogue of dopam-
ine has a greater potency at b2-adrenoceptors but less potency
at dopaminergic receptors. It was thought to be devoid of a-
adrenoceptor activity, but may, in fact, possess antagonist
properties at this receptor (Martin and Broadley, 1995) and
very weak agonism at b1-adrenoceptors (Brown et al., 1985;
Bass et al., 1987). Dopexamine’s cardiovascular actions
include chronotropy, inotropy and vasodilatation particu-
larly in mesenteric, skeletal and renal beds (Mousdale et al.,
1988; Olsen et al., 1993). These effects are believed to be due
to a combination of direct b2-adrenoceptor stimulation
(vasodilatation and tachycardia), dopaminergic stimulation
(decreasing renal and mesenteric vascular resistance) and an
increased release of noradrenaline from sympathetic nerve
terminals. However, these cardiovascular changes do not nec-
essarily result in an increased myocardial oxygen demand
(Dawson et al., 1985).

Sympathomimetics
Phenylephrine. Phenylephrine is a selective a1–adreno-
ceptor agonist predominantly causing proximal arterial
effects (vasoconstriction) with terminal arteriolar sparing
(Morelli et al., 2008). Phenylephrine reduces pulmonary
vessel calibre because of a combination of pulmonary vaso-
constriction and also passively if a drop in cardiac output
occurs (Aviado and Schmidt, 1957). A reflex bradycardia can
often be seen with administration whether cardiac output is
affected or not. Potent and selective a-adrenoceptor agonists
decrease renal and splanchnic blood flow (Hoffbrand and
Forsyth, 1973), which may give cause for concern when used
to increase arterial pressure in critically ill patients.

Metaraminol. Metaraminol is a mixed direct- and indirect-
acting sympathomimetic (Foster, 1966). It has direct action at

a-adrenoceptors and increases the amount of noradrenaline in
the synaptic cleft through displacement from pre-synaptic
storage vesicles and by competing with noradrenaline for
uptake-1, thus, leading to a-adrenoceptor and b1-adrenoceptor
agonism. A relatively long half-life is conferred by a resistance
to MAO and COMT. Although this drug has b-adrenoceptor
agonist actions, vasoconstriction causes a reflex bradycardia
and may result in an overall fall in cardiac output (Dart, 2004).
Pulmonary artery pressures can increase because of vasocon-
striction although with variable changes in pulmonary flows
due to the mixed effects on cardiac output (Aviado and
Schmidt, 1957). It is mainly used during surgery or critical
illness to reverse short-term episodes of hypotension.

Ephedrine. Ephedrine is a mixed direct- and indirect-acting
sympathomimetic. It is taken up (U1) into nerve terminals and
displaces noradrenaline from vesicles and nerve terminals to
cause a-adrenoceptor effects. The problem of tachyphylaxis
can occur with prolonged use of the drug because of depletion
of noradrenaline (Moss and Renz, 2000). Ephedrine also exhib-
its mild direct b-adrenoceptor activity (Kobayashi et al., 2003)
with increases in cardiac output of up to 20% due to increases
in heart rate and stroke volume (Cohn, 1965). Myocardial
oxygen consumption is increased in common with all cat-
echolamines and sympathomimetics. Other effects include
bronchodilation, respiratory stimulation, mydriasis and toco-
lysis (Sasada and Smith, 2003). Studies in dogs suggest a
decrease in pulmonary vascular resistance with an associated
increase in pulmonary blood flow (Aviado and Schmidt, 1957).
MAO and COMT resistance confers a longer half-life, and the
drug is mainly excreted unchanged in the urine (Sasada, 2003).

PDEI
PDE has 11 isoforms, the important isoform for inotropic
effects being PDE III. Methylxanthines (theophylline, caf-
feine) are non-selective PDEIs whereas amrinone, milrinone
(bipyridines) and enoximone (imidazolone) are PDE III selec-
tive. These drugs enhance cAMP and PKA levels through
non-receptor-dependent mechanisms and increase inotropy,
chronotropy and lusitropy while decreasing preload and
afterload (Figures 1 and 2). These agents are potent pulmo-
nary vascular dilators and are considered particularly useful
in the treatment of acute severe right heart failure and pul-
monary hypertension (Greeley et al., 2000).

Amrinone and milrinone. Amrinone and milrinone are bipy-
ridine derivatives. Milrinone is more commonly used than
amrinone because of the latter’s tendency to cause dose-
dependent thrombocytopaenia. This has been associated
with the metabolite N-acetyl-amrinone (Lehtonen et al.,
2004). Milrinone is a more potent analogue of amrinone
(Alousi and Johnson, 1986), which is mainly excreted
unchanged in the urine. In common with all PDE III inhibi-
tors, milrinone has a similar cardiovascular profile to dob-
utamine. However, milrinone increases heart rate to a lesser
extent despite a greater tendency to decrease systemic vascu-
lar resistance. Milrinone decreases pulmonary vascular resis-
tance and pulmonary artery pressure with a smaller effect on
myocardial oxygen demand (Prielipp et al., 1996; Petersen
and Felker, 2008). This may be due to compensation by
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preload and afterload reductions, leading to decreased ven-
tricular wall stress (Colucci, 1991). Left ventricular pressure–
volume loops suggest that lusitropy is enhanced and right
ventricular afterload is decreased (Colucci, 1991). There has
been some suggestion that milrinone does not, in fact,
increase contractility to any significant degree, the vasodila-
tor actions being more significant, although this is contro-
versial (Ludmer et al., 1986; Royse et al., 2007).

Enoximone. Enoximone is an imidazolone and a selective
PDE III inhibitor. In vivo comparisons demonstrate less inot-
ropy and chronotropy, but more lusitropy when compared
with milrinone. However, at clinical doses, only milrinone
produced significant inotropic and lusitropic effects (Zausig
et al., 2006). Enoximone may increase fat metabolism in com-
parison with glucose, which could be beneficial in septic shock
(Trager et al., 2001). Enoximone is metabolized by saturable
enzyme systems and the active metabolites are renally
excreted, although the parent compound itself is not (Leh-
tonen et al., 2004). The half-lives of PDE III inhibitors increase
in renal failure, which is common among critically ill patients.

Aminophylline. Aminophylline is the ethylenidiamine salt of
theophylline and was commonly used in the treatment of
severe acute bronchial asthma and also as a treatment for
increasing urine output in impending acute kidney injury.

Aminophylline also has mild inotropic activity and continues
to be used, albeit infrequently, for this purpose.

Levosimendan
Levosimendan is a myofilament calcium sensitizer and a novel
inotrope that increases contractility without increasing cAMP
levels appreciably at clinically recommended doses. Unlike
other inotropes, levosimendan does not exert its action
through potentially harmful increases in intracellular Ca2+.
This may explain why this agent does not impair diastolic
relaxation and cardiac rhythm, and has less harmful effects on
myocardial energetics (Toller and Stranz, 2006; Tavares et al.,
2008). Levosimendan binds to the N-terminal of troponin C
with high affinity, but at [Ca2+]i,, which are only reached in
systole, prolonging the interaction of myosin and actin fila-
ments through inhibition of troponin I. This contrasts with
other filament sensitizers that remain bound at Ca2+ concen-
trations, which occur in diastole, thus, impairing diastolic
relaxation and ventricular compliance (Toller and Stranz,
2006; Tavares et al., 2008). Levosimendan has PDE III inhibi-
tory actions, but these are not thought to be clinically signifi-
cant (Toller and Stranz, 2006). Importantly, the levosimendan
metabolite OR-1896 has similar calcium-sensitizing actions to
the parent molecule, maintaining the inotropic effect of levo-
simendan once an infusion is stopped (Toller and Stranz,
2006). The cardiovascular effects of levosimendan include

Figure 2
Intracellular mechanisms of catecholamine and PDEI modulation of vascular tone. Catecholamines and PDEIs modulate [Ca2+]i and, therefore,
vascular smooth muscle cell tone as Ca2+ activates myosin light chain kinase (MLCK) and downstream contractile events. Vasoconstriction follows
cAMP decreases or PLC stimulation. Vasodilatation follows cAMP increases. cAMP is broken down by PDE and generated by adenylate cyclase (AC).
b adrenoceptors positively couple to AC by Gs whereas a2 adrenoceptors negatively couple via Gi. cAMP activates PKA, which is responsible for
enhancing calcium pumping into sarcoplasmic reticulum (SR) and extracellular spaces, for MLCK inhibition and cellular hyperpolarization
consequently inhibiting voltage-sensitive calcium channel (VSCC). a1 adrenoceptors positively couple to PLC via Gq resulting in the generation
of inositol 1,4,5 trisphosphate (IP3) and DAG from phosphatidylinositol 4,5 bisphosphate (PIP2). IP3 activates SR calcium channels, increasing
[Ca2+]i while DAG and calcium both stimulate PKC. PKC enhances contractile element sensitivity. Receptor-operated calcium channels (ROCC)
are positively coupled to a1 adrenoceptors via non Gq subunits. NO is generated by NOS 3 in endothelium following a2 and b adrenoceptor
ligation. NO diffuses to vascular smooth muscle resulting in protein kinase G mediated decreases in calcium, PDE inhibition and vasodilatation.
The endothelium is thus a powerful modulator of vascular tone.
5′AMP, 5′ adenosine monophosphate; Gs/i/q, relevant G-protein a subunit.
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increased heart rate when high-dose loading and infusions are
used, possibly via baroreceptor-mediated pathways. In vascu-
lar tissue, levosimendan acts as a vasodilator by decreasing the
sensitivity of myofilaments to Ca2+ and activating of K+ chan-
nels. This results in hyperpolarization, decreased Ca2+ entry
and vasodilatation (Toller and Stranz, 2006; Petersen and
Felker, 2008). Levosimendan is generally used for 24 h due to
OR-1896 accumulation, which has a terminal half-life of 96 h
(Toller and Stranz, 2006).

Changes to pharmacokinetics and
pharmacodynamics of inotropic agents
during critical Illness
Alterations in receptor and intracellular signalling pathways.
Agonist binding to adrenoceptors causes coupling with G
proteins (Figures 1 and 2). These G proteins consist of three
subunits (a, b and g), the type of a subunit denoting the type
of G-protein (Gs is Ga(s)bg). On coupling, a subunits exchange
GDP for GTP, dissociate from the complex and are active until
the GTP is hydrolysed back to GDP. a-GDP then reassociates
with the bg subunit complex and is available to couple with
another adrenoceptor. The duration of signalling is inversely
related to the speed with which a-GTP is hydrolysed to
a-GDP, a process promoted by regulator of G-protein signal-
ling (RGS) molecules (Hendriks-Balk et al., 2008). RGS mRNA
is increased by endotoxin and may, therefore, constitute one
mechanism of diminished adrenoceptor agonist responses in
sepsis (Panetta et al., 1999; Hendriks-Balk et al., 2009; Rieken-
berg et al., 2009). b-adrenoceptors couple predominantly to
G-stimulatory (Gs) proteins but also couple to G-inhibitory
(Gi) proteins (Bohm et al., 1995; Martin et al., 2004). Pro-
longed b2 adrenoceptor agonism induces both reductions in
Gs and increases in Gi. This switch to Gi signalling has been
confirmed in human and animal sepsis studies (Bohm et al.,
1995; Bernardin et al., 1998; Wu et al., 1999; 2003). Evidence
also exists of a predominant down-regulation of most
adenylate cyclase isoforms in several tissues in response to
endotoxaemia, potentially further affecting adrenoceptor sig-
nalling processes (Risoe et al., 2007).

Sustained adrenoceptor agonism frequently occurs in
sepsis and may result in desensitization and down-regulation
of a and b adrenoceptors (Heck and Bylund, 1997). This
occurs partly through the above mechanisms and also by
activation of PKA and PKC, which phosphorylate GPCRs
indiscriminately. Agonist-bound adrenoceptors are also spe-
cifically phosphorylated by G-protein receptor kinases
(GRKs). Both mechanisms result in receptor internalization,
although GRK phosphorylation of activated receptors also
results in further uncoupling from Ga signalling subunits
through the attachment of b-arrestin molecules. GRK 2
(phosphorylates b2 adrenoceptors) may be up-regulated in
sepsis (Kadoi et al., 2002). In addition to these effects on
existing adrenoceptors and their signalling partners, sus-
tained adrenoceptor agonism also reduces generation of new
adrenoceptors. As a result, adrenoceptors become refractory
to agonism, signal for shorter periods and in atypical ways.
These changes occur in heart failure but are more pro-
nounced in the heart in sepsis because of synergistic effects of
endotoxin and TNF-a. Sepsis also up-regulates other related
pathways such as PDE III (Choi et al., 2009).

Free radicals and the auto-oxidation of catecholamines. Sepsis is
associated with the generation of NO and subsequently per-
oxynitrite, which deactivates catecholamines (Takakura et al.,
2003) and disturbs adrenoceptor function (Takakura et al.,
2002; Lewis et al., 2005). Catecholamines are also degraded by
superoxide to quinones. This is autocatalytic as superoxide is
regenerated. This reaction may be more important in shock
states when pH decreases and free radical and catecholamine
levels are elevated. Quinones are neurotoxic (Smythies and
Galzigna, 1998) and cardiotoxic (Yates et al., 1981; Bindoli
et al., 1992; Neri et al., 2007). The inverse relationship between
plasma levels of adrenochromes and catecholamines suggests
refractoriness to catecholamine therapy in shock states may
relate to this deactivation (Macarthur et al., 2000), in particu-
lar by polymorphonuclear leucocytes (Matthews et al., 1985).

Additional effects of inotropes and
vasopressors in critical illness
Regional blood flow. Reductions in renal and hepatosplanch-
nic blood flow are a concern in critical illness. However, there
is no evidence that this occurs in resuscitated states of patho-
logical vasodilatation treated with noradrenaline (Reinelt
et al., 1997), and there may be some improvement in
microvascular flow and tissue oxygenation (Albanese et al.,
2004; Jhanji et al., 2009b). Dopamine, noradrenaline and
adrenaline produce similar splanchnic blood flow in moderate
septic shock, although in severe septic shock, adrenaline
decreases splanchnic blood flow when compared with norad-
renaline (De Backer et al., 2003). Phenylephrine also reduces
splanchnic blood flow when compared with noradrenaline in
septic shock (Reinelt et al., 1999). Although dopexamine may
improve tissue oxygenation and microvascular flow (Jhanji
et al., 2010), the evidence for this in the hepatosplanchnic bed
is equivocal and may only occur in some patient groups
(Renton and Snowden, 2005). Vasopressin analogues also
decrease hepatosplanchnic blood flow, but have unique effects
on intrarenal haemodynamics in shock (Albert et al., 2004).

Metabolic changes. a adrenoceptors inhibit the pancreatic
release of insulin whereas b adrenoceptors stimulate glucagon
release, and hepatic glycogenolysis and gluconeogenesis. This
increases serum glucose concentration. Catecholamines also
stimulate lipolysis, increasing plasma free fatty acids. These
effects are particularly pronounced with adrenaline (Ensinger
et al., 1995) and relate to the intrinsic ability of the catechola-
mines to generate cAMP (Barth et al., 2007). The effect on
protein catabolism is complex as b2 agonism can inhibit pro-
teolysis (Navegantes et al., 2001) but hypermetabolic states
with protein breakdown result when catecholamine levels
remain elevated. Dopamine suppresses growth hormone and
thyroid-stimulating hormone release, potentially exacerbat-
ing protein losses (Schilling et al., 2004). b2 adrenoceptor-
mediated increases in lactate relate to increased Na+/K+

ATPase activity, increasing VO2 (Levy et al., 2008). VO2 also
increases through b adrenoceptor-mediated increases in sub-
strate flux and mitochondrial uncoupling. Unlike in health
(Bearn et al., 1951), in the hepatosplanchnic bed in sepsis,
splanchnic VO2 may not necessarily relate directly to hepatic
metabolic workload though (Reinelt et al., 1997; 1999).
Although catecholamines directly cause mitochondrial

BJP MN Bangash et al.

2022 British Journal of Pharmacology (2012) 165 2015–2033



complex inhibition, mitochondrial respiratory efficiency
during endotoxaemia may improve in some tissues (Porta
et al., 2006; 2009; Regueira et al., 2008). Studies suggest that
adrenaline, noradrenaline and dobutamine may be better in
this regard than dopamine (Jakob et al., 2002; De Backer et al.,
2003; Guerin et al., 2005). Mitochondrial uncoupling protein
(UCP) 2 expression is up-regulated in the heart in sepsis
(Roshon et al., 2003), possibly as a means to decrease free
radical production (Boss et al., 2000). However, this decreases
mitochondrial Ca2+ uptake and permits a greater degree of
arrhythmogenic Ca2+ sparking in addition to impairing
excitation–contraction efficiency (Turner et al., 2011). It is
important to note that arrhythmias occur more frequently in
association with dopamine treatment for septic shock (De
Backer et al., 2010) and that quinone-induced mitochondrial
UCP and transition pore opening may be a mechanism of
cytotoxicity (Berman and Hastings, 1999).

Bacterial growth. Iron is required for several intracellular pro-
cesses essential for the growth of bacteria. Some strains of
bacteria sequester iron by secreting siderophores that bind
iron and reuptaking the siderophore–iron complexes. Cat-
echolamines, particularly noradrenaline, can increase bacte-
rial iron uptake, stimulating growth (Coulanges et al., 1997).
There is also some evidence that catecholamines act as host
signals to enhance virulence factors and gene transfer in
commensal organisms such as Escheria coli (Hughes and Sper-
andio, 2008; Peterson et al., 2011).

Immune system. Adrenoceptors can be identified in all
immune cells as well as in the endothelium and play a central
role in many aspects of the immune response, which is clearly
of particular importance during critical illness. Acutely,
adrenaline infusion results in a b-adrenoceptor-mediated leu-
cocytosis, predominantly cytotoxic cells, from the marginat-
ing pool (Rogausch et al., 1999; Dimitrov et al., 2010).
However, the initial leucocytosis seen in endotoxaemia is a1

adrenoceptor mediated (Altenburg et al., 1997). Various cat-
echolamines have been shown to either increase (Horn et al.,
2005) or decrease neutrophil–endothelial (Boxer et al., 1980;
Schmidt et al., 1998) and lymphocyte–endothelial interac-
tions (Carlson et al., 1996). Different catecholamines modu-
late the expression of integrins on the surface of leucocytes
(Trabold et al., 2007), decrease chemotaxis (Silvestri et al.,
1999) and phagocytosis (Gosain et al., 2007), decrease neutro-
phil a-defensin secretion (Riepl et al., 2010), and decrease
respiratory burst in neutrophils (Weiss et al., 1996; Lunemann
et al., 2001). There are also effects on lymphocyte proliferation
and differentiation such that CD8+ cells are decreased and
antibody secretion by B-cells is decreased (Bergquist et al.,
1994; Qiu et al., 2005). a1 and b2 adrenoceptor mechanisms
increase apoptosis in lymphocytes (Jiang et al., 2009),
although dopamine-induced prolactin suppression may also
play a role (Zhu et al., 1997). Catecholamines have complex
effects on cytokine release, partly dependent on the stage of
sepsis (Bergmann et al., 1999). In general, pro-inflammatory
cytokine release is reduced by b2 adrenoceptor agonism, while
anti-inflammtory cytokines such as IL-10 increase (Szabo et al.,
1997; Muthu et al., 2005). a-adrenoceptor agonism results in
opposite effects. a2 adrenoceptors control neutrophil homing
in endotoxaemia (Abraham et al., 1999), and Gi signalling is

important in leucocyte extravasation (Pero et al., 2007), but
the situation may differ in haemorrhage (Arcaroli et al., 2002).
In general, dopamine and adrenaline appear to have immu-
nosuppressive actions while noradrenaline is less so, probably
because of a weaker effect at b2 adrenoceptors. Endogenous
and exogenous catecholamines may contribute to late-phase
immunosuppression commonly seen after major surgery,
trauma or sepsis. Alternative agents such as vasopressin also
have immune effects (Hofstetter et al., 2007; Russell and
Walley, 2010).

Apoptosis, inflammation and other receptor systems. Other
than apoptosis in lymphocytes (Jiang et al., 2009), several
catecholamines and PDEIs induce heart, vascular smooth
muscle and skeletal muscle myocyte apoptosis (Burniston
et al., 2005; Garcia-Cazarin et al., 2008). Quinone molecules
have been shown to open the mitochondrial permeability
transition pore (Berman and Hastings, 1999), an important
step in inducing cell death pathways. Inflammatory path-
ways under catecholamine modulation are those centred on
NF-kB activation; these are responsible for cytokine gene
regulation (Arcaroli et al., 2002). Enzymes involved in cell
survival, such as glycogen synthase kinase 3B (Ballou et al.,
2001), PI-3-kinase (Yamboliev and Mutafova-Yambolieva,
2005) and ERK (Wright et al., 2008) have also been shown to
be activated by a1 and a2 agonism, often through actions of
Gbg subunits. Proteosomal inhibition and concomitant
up-regulation of heat shock proteins have also been demon-
strated (Costa et al., 2009). Although this is deemed beneficial
in ischaemia reperfusion, persistent adrenergic agonism is
likely to increase apoptotic and anti-inflammatory responses.
This may contribute to the cardiac dysfunction (Moretti et al.,
2002; Chopra and Sharma, 2009), immune anergy and organ
dysfunction seen with sepsis. Transactivation of endothelial
growth factor receptor (EGFR) by a adrenoceptor agonism has
been shown to be important in vascular contractile responses
(Hao et al., 2006), but the significance of this signalling in the
context of critical illness is not known.

Coagulation & platelets. Both a and b adrenoceptors mediate
the exocytosis of von Willebrand factor (vWF), clotting factor
VIII, tissue plasminogen activator and chemoattractant IL-8
from Weibel–Palade bodies in endothelial cells. However, PKA
results in partial stabilization of these bodies while Gq signal-
ling does not (Rondaij et al., 2006). The activation of Gi by
platelet a2 adrenoceptors is necessary to decrease a tonic
inhibition on platelet aggregation (Maayani et al., 2001). The
aggregation of platelets is enhanced only in the presence of
very high levels of circulating catecholamines (Ikarugi et al.,
2003) such as in sepsis, as b-adrenoceptor stimulation prob-
ably mitigates that of a stimulation at lower plasma catechola-
mine levels (Yu and Latour, 1977). Platelet activation may
impede microvascular flow and tissue oxygen delivery by a
combination of enhanced platelet–leucocyte–endothelial
interactions (von Hundelshausen et al., 2009) and micro-
thrombus formation. Although epinephrine can increase
factor VIII and platelet aggregation, the severity of sepsis is
actually associated with diminished platelet aggregation
(Yaguchi et al., 2004), and epinephrine has been shown to
decrease coagulation in endotoxaemia (van der Poll et al.,
1997).
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Gastrointestinal tract. The gut is richly innervated and is,
therefore, responsive to neuronally released and circulating
catecholamines (De Ponti et al., 1996). In critical illness the
use of catecholamines and degree of motility disturbance are
associated (van der Spoel et al., 2006), although the severity
of illness and use of sedative drugs disturbs motility and also
associates with catecholamine use. Endogenous catechola-
mines have all been shown to directly inhibit motility in the
colon, ileum and upper gastrointestinal tract in vitro (Beani
et al., 1969; Kosterlitz et al., 1970) and in vivo (Dive et al.,
2000). In vitro studies suggest this may be less of an issue with
some synthetic catecholamines (Fruhwald et al., 2000).

Clinical trials of inotropes and
vasopressor agents
Sepsis. Septic shock is a common presentation in the critical
care unit, resulting in impaired ventricular function, patho-
logical vasodilatation, hypovolaemia, deranged microvascu-
lar flow and increased capillary permeability (Dellinger,
2003). Inotropic and vasopressor agents are, therefore, among
the most important therapies in the treatment of this syn-
drome. However, despite the fundamental importance of
appropriate vasoactive drug use in the treatment of patients
with septic shock, the clinical evidence base is surprisingly
limited. In combination with i.v. fluids, the objective of vaso-
active drug therapy is to restore cardiac output, arterial pres-
sure, and hence, tissue perfusion and oxygenation. Once
adequately fluid-resuscitated a combination of vasopressor
and/or inotropic agents may be used to achieve the desired
physiological targets. There is an extensive debate regarding
the most appropriate physiological goals for vasoactive drug
therapy in septic shock, as well as in other patient groups. It
is beyond the scope of this review to explore this issue in
detail. However the most important goals that continue to be
debated are mean arterial pressure, cardiac output, systemic
oxygen delivery (DO2) and, more recently, mixed/central
venous saturation (ScvO2). However, there is also a growing
body of evidence that vasoactive drug therapies exert many
important effects within the microcirculation, which may
not be immediately identified from changes in global haemo-
dynamics (De Backer et al., 2006; Jhanji et al., 2009a; 2010).
There is no standard dosing regimen for inotropic agents;
there is considerable variability in practice. Further research
into dose selection is likely to prove of even greater value
than research comparing different agents. However, it seems
likely that the optimal approach will involve the use of ino-
tropic agents in the lowest effective dose and for the
minimum period of time. There has been some confusion
between the effects of treatments used to achieve haemody-
namic goals and the monitoring device used to provide the
data. In particular there has been some concern regarding
excess mortality related to use of the pulmonary artery cath-
eter. However, three large multi-centre trials have now con-
firmed the safety of this device (Richard et al., 2003; Sandham
et al., 2003; Harvey et al., 2006).

The majority of vasoactive agents in current use are cat-
echolamine based. Adrenaline, noradrenaline and dob-
utamine are probably the most commonly used agents. A
number of clinical trials have explored the use of specific
haemodynamic goals such as cardiac index, DO2 and ScvO2

(Hayes et al., 1994; Gattinoni et al., 1995; Rivers et al., 2001).

The use of such goals may be effective in the early stages of
resuscitation of patients with septic shock (Rivers et al.,
2001). However, later application for prolonged periods or
the aggressive pursuit of goals in patients who do not respond
has proved ineffective (Gattinoni et al., 1995; Alia et al., 1999)
and may even be harmful (Hayes et al., 1994). Use of high-
dose catecholamine therapy to achieve purely physiological
therapeutic goals may contribute to excess mortality (Rona,
1985). In recent years, the use of adrenaline has declined in
favour of dobutamine because the potential vasodilator
effects of the latter agent are thought to improve tissue
microvascular flow. However, in a multi-centre trial, the use
of a combined regimen of dobutamine and noradrenaline
was associated with similar clinical outcomes to adrenaline
alone (Annane et al., 2007). In another trial, adrenaline was
compared directly with noradrenaline, again with similar
mortality rates (Myburgh et al., 2008). Interestingly more
patients in the adrenaline group were withdrawn primarily
because of transient metabolic effects of this drug (Myburgh
et al., 2008). PDEIs are also an option in the treatment of
septic shock. Like dobutamine, the vasodilator properties of
this group of agents are believed to enhance tissue microvas-
cular flow, although this has not been clearly demonstrated
in studies in human sepsis. However, the consequent reduc-
tion in arterial pressure may necessitate an increased dose of
vasopressor agent and the longer half-life, which is further
increased in renal failure (Lehtonen et al., 2004), can limit the
flexibility of this treatment approach.

In terms of vasopressor therapy, the findings of a recent
large multi-centre trial comparing dopamine with norad-
renaline in a mixed population of critically ill patients
suggest noradrenaline use is associated with better clinical
outcomes (De Backer et al., 2010). It is likely that these find-
ings, in fact, relate to harmful chronotropic effects of dopam-
ine resulting in tachycardia and perhaps myocardial
ischaemia (De Backer et al., 2010). The role of dopamine in
the prevention and treatment of acute kidney injury is dis-
cussed below. There is continued interest in the use of vaso-
pressin in septic shock as this agent may have a particular
role in the treatment of catecholamine-resistant loss of vas-
cular tone. Both terlipressin and aVP have been used in this
context, although the latter has been more thoroughly
studied in humans. Findings of a large trial suggested no
difference in clinical outcomes between noradrenaline and a
combined regimen of aVP and noradrenaline (Russell et al.,
2008). However, there is some concern that the pure vaso-
constrictor actions of vasopressin may result in further
impairment of microvascular flow, particularly in the
hepatosplanchnic bed (Martikainen et al., 2003; Westphal
et al., 2004). Vasopressin is likely to be of value in the case of
hypotension due to vasodilatation but may not necessarily
be beneficial where this is due to low cardiac output as the
combination of coronary vasoconstriction and increased
ventricular afterload may result in further compromise of
myocardial function (Muller et al., 2008; Simon et al., 2009).
Furthermore, vasopressin analogues (particularly terlipres-
sin), have a longer half-life than the catecholamines and
cannot be titrated to effect as easily. Further research directly
comparing the effects of vasopressin and noradrenaline may
provide more useful guidance on the use of these agents
(Russell et al., 2008; Gordon et al., 2010).
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In one very small randomized trial, there were no dif-
ferences in physiological parameters in patients treated with
phenylephrine compared with noradrenaline in septic
shock (Morelli et al., 2008). However it is questionable
whether the effects of pure a1-agonism are always beneficial
in septic shock, again due to concerns regarding the effect
of pure vasoconstrictor agents on microvascular flow. There
is some limited data to suggest that metaraminol could be
used as a vasopressor agent in septic shock (Natalini et al.,
2005). Because this agent may be administered via a periph-
eral vein as well as a central venous catheter, it has
some application as a vasopressor in the early period of sta-
bilization when a patient with haemodynamic shock is first
identified but has yet to have a central venous catheter
inserted.

There may be important interactions between inotropic
drugs and patient genotype (Nakada et al., 2010). The CysG-
lyGln haplotype of the b2 adrenoceptor gene is associated
with altered responses to adrenergic agonists in asthmatic
patients. Recent research has suggested that certain polymor-
phisms of this adrenoceptor gene may be associated with
greater inotrope requirements and increased mortality from
septic shock. Further understanding of the pharmacogenom-
ics of inotropic agents may allow more appropriate drug
therapy for individual patients. However, there is very little
research data in this area at present.

Acute kidney injury. There has been some interest in the use
of inotropic agents, particularly dopaminergic agents, in the
prophylaxis and treatment of acute kidney injury. For many
years, the renovascular effects of low-dose dopamine were
believed to be beneficial in both respects. Certainly in the
0–5 mg·kg·min-1 dose range, dopamine promotes diuresis and
natriuresis, but there has been little evidence that this effect
ameliorates any harmful effects on global renal function.
The findings of a randomized trial confirm that the physi-
ological effects of this agent in terms of renal function are
not associated with any improvement in the need for hae-
modialysis or other relevant clinical outcomes (Bellomo
et al., 2000). Since the publication of these findings, most
critical care physicians have stopped using dopamine for
this indication (Kellum and Decker, 2001). Although not an
inotrope but, in fact, an antihypertensive agent, the selec-
tive D1 agonist and dopamine analogue fenoldopam has also
been studied for the prevention of acute renal failure in
various settings. While still requiring a definitive trial to
prove the case, there is current evidence suggesting
fenoldopam may ameliorate acute kidney injury, although
not from contrast-induced causes (Halpenny et al., 2002;
Stone et al., 2003; Bove et al., 2005; Morelli et al., 2005;
Tumlin et al., 2005; Landoni et al., 2007; 2008). Contrast-
induced nephropathy occurs in 11% of critically ill patients
and is defined as an absolute (0.5 mg·dL-1) or relative
increase (>25%) in serum creatinine over 48–72 h following
the use of nephrotoxic radio-opaque contrast agents in diag-
nostic imaging procedures (Mehran and Nikolsky, 2006;
Rashid et al., 2009). There has also been some interest in the
effect of dopexamine on perioperative acute kidney injury.
However, these small studies have not clearly confirmed or
refuted such an effect of dopexamine infusion (Schmoelz
et al., 2006; Jhanji et al., 2010).

Severe heart failure and cardiogenic shock. Of all categories of
patients who require inotropic therapy, those with severe
heart failure are the most challenging to treat. In most cases,
inotropes can only be regarded as a bridging therapy to stabi-
lize patients while definitive, often surgical, interventions can
be arranged. Few agents have been associated with improved
outcomes in clinical trials and several with reduced survival.
This creates a dilemma for the clinician faced with a patient
with severe haemodynamic shock who is unlikely to survive
without some form of restoration of homeostasis through
improved cardiac output and arterial pressure. It would not be
considered ethical to randomize such patients into the placebo
arm of a clinical trial that does not provide some form of
vasoactive drug therapy. Thus, it seems likely that vasopressor
and inotropic therapies do prolong survival, however, briefly.

Findings of a recent large multi-centre trial discussed above
suggest that vasopressor therapy with dopamine may be asso-
ciated with an increased mortality when compared with nora-
drenaline. This effect was most obvious in the subgroup of
patients with heart failure in whom the significant chronotro-
pic effects of dopamine are most likely to cause harm due to
myocardial ischaemia (De Backer et al., 2010). It seems likely
that the use of dopamine will decline following this trial.
Unfortunately, the findings of other trials have provided little
in the way of clear guidance for clinical practice.

Neither dobutamine nor milrinone has proved to be supe-
rior to the other in the treatment of heart failure (Petersen
and Felker, 2008). Furthermore milrinone treatment is asso-
ciated with an increased mortality over baseline in heart
failure patients (Packer et al., 1991). Reasons for this are
unclear, but PDE III inhibition causes increased plasma renin
levels through non-renal baroreceptor-, cAMP-mediated
mechanisms in juxtaglomerular cells (Chiu and Reid, 1996;
Chiu et al., 1999).

There has been great interest in the use of the novel agent
levosimendan in patients with severe heart failure and car-
diogenic shock. Early data have suggested that treatment
with levosimendan in these circumstances may improve
cardiac performance with little or no increase in myocardial
work. Initial small clinical trials supported this theory with
evidence of improved haemodynamics and, perhaps, survival
after a 24 h infusion. However, larger trials failed to confirm
this survival benefit when compared with dobutamine
therapy in patients with heart failure (Mebazaa et al., 2007).
When compared with placebo, levosimendan use was associ-
ated with increased mortality at 90 days, and a higher inci-
dence of hypotension and arrhythmia (Petersen and Felker,
2008). However, given the problematic evidence base for ino-
tropic therapy in heart failure, there is still an argument for
the use of levosimendan, in particular, after cardiac surgery
(Braun et al., 2006) and in patients with right heart failure
where pulmonary vasodilator effects may be important.

Major surgery. Anaesthetists commonly use various mild ino-
tropic or vasopressor agents in bolus doses to correct the
cardiovascular effects of general and regional anaesthesia.
Ephedrine, phenylephrine and metaraminol have proved
popular for this indication. A small proportion of patients who
undergo major surgery will develop haemodynamic shock and
require an inotrope or vasopressor infusion. Such cases are
generally managed in a similar way to that described for
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patients with septic shock. However, there has also been a
long-standing interest in the use of inotropic agents as part of
a ‘goal-directed’ approach to haemodynamic therapy with
pre-determined goals, including cardiac index, systemic
oxygen delivery and/or venous saturation. In fact, most clini-
cal trials of inotropic agents in patients undergoing major
surgery have related to this approach, which may improve
outcome by augmenting oxygen delivery to the tissues (Jhanji
et al., 2010). Once again, although a number of clinical trials of
goal-directed perioperative haemodynamic therapy have been
performed, most have been small single-centre trials. The
findings of these trials have proved inconsistent because of
important methodological variations including differences in
patient group, timing and duration of interventions, treat-
ment end-points, therapies used to achieve end points, and
choice of monitoring technology. Some trials identified reduc-
tions in morbidity (Berlauk et al., 1991; Polonen et al., 2000;
Pearse et al., 2005) and mortality (Boyd et al., 1993; Wilson
et al., 1999; Lobo et al., 2000). Others, however, failed to show
any benefit (Ueno et al., 1998) particularly in the case of
vascular surgery (Bender et al., 1997; Ziegler et al., 1997; Val-
entine et al., 1998; Bonazzi et al., 2002).

Dopexamine has been the most frequently investigated
agent in the surgical population. This agent may have specific
beneficial effects on tissue microvascular flow and oxygen-
ation in patients following major gastrointestinal surgery
(Jhanji et al., 2010). Interestingly, the findings of a metar-
egression analysis suggest that dopexamine may, in fact, have
a biphasic effect on outcome, with improved survival in low
doses (<1 mg·kg·min-1) but reduced survival at higher doses
(Pearse et al., 2008). The b2-agonist effects of dopexamine
often result in significant tachycardia at higher doses, and, in
common with dopamine, it seems likely that this may be
associated with an increased incidence of myocardial
ischaemia. Once again, these data indicate the importance of
using inotropes at the minimum effective dose.

Cardiac arrest
Findings from animal studies had long suggested a role for
adrenaline in resuscitation prior to the discovery of modern
cardiopulmonary resuscitation (CPR) techniques for cardiac
arrest (Crile and Dolley, 1906). Later studies suggest vasocon-
strictor effects of adrenaline may be more important than
inotropy in this setting (Paradis et al., 1990; Pearson and
Redding, 1963a,b; Yakaitis et al., 1979). In clinical studies, i.v.
drug administration following out-of-hospital cardiac arrest
was associated with increased short-term survival but not in
survival to hospital discharge or improved neurological out-
comes. Similarly, comparisons of selective a-adrenergic ago-
nists, vasopressin, high doses of adrenaline/noradrenaline
with standard-dose adrenaline do not suggest any differences
in survival or neurological outcomes in cardiac arrest (Calla-
ham et al., 1992; Patrick et al., 1995; Woodhouse et al., 1995;
Gueugniaud et al., 1998; 2008; Stiell et al., 2001; Perondi
et al., 2004; Wenzel et al., 2004; Callaway et al., 2006). Incon-
sistencies between animal and clinical studies may reflect the
validity of laboratory models (Reynolds et al., 2007). Consid-
erable uncertainty remains over the role of vasoactive therapy
in cardiac arrest. Current guidelines place greater importance
on effective chest compressions, early defibrillation and post-
resuscitation care. (Hazinski et al., 2010; Nolan et al., 2010).

However, use of adrenaline, particularly in cases of anaphy-
laxis, is still recommended in the absence of a superior
alternative.

Conclusions

Despite widespread use, the evidence base for the use of
inotropes and vasopressors in critically ill patients is limited.
Clearly, many patients would not survive without inotropic
support, but there is, nonetheless, considerable variation in
clinical practice. Few large randomized controlled trials
directly compare agents in terms of survival or other patient
relevant outcomes, which is the level of evidence increasingly
demanded by clinicians. However, current practice can be
improved through a more detailed understanding of the
diverse actions of these agents and the potential toxic effects.
It would seem prudent to use minimum necessary doses of
such agents until the evidence base improves.
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